67 research outputs found

    Congenital Aortic Stenosis in Childhood

    Get PDF

    End-to-End Deep Learning Model for Cardiac Cycle Synchronization from Multi-View Angiographic Sequences

    Full text link
    Dynamic reconstructions (3D+T) of coronary arteries could give important perfusion details to clinicians. Temporal matching of the different views, which may not be acquired simultaneously, is a prerequisite for an accurate stereo-matching of the coronary segments. In this paper, we show how a neural network can be trained from angiographic sequences to synchronize different views during the cardiac cycle using raw x-ray angiography videos exclusively. First, we train a neural network model with angiographic sequences to extract features describing the progression of the cardiac cycle. Then, we compute the distance between the feature vectors of every frame from the first view with those from the second view to generate distance maps that display stripe patterns. Using pathfinding, we extract the best temporally coherent associations between each frame of both videos. Finally, we compare the synchronized frames of an evaluation set with the ECG signals to show an alignment with 96.04% accuracy

    Multi-parametric MRI as an indirect evaluation tool of the mechanical properties of in-vitro cardiac tissues

    Get PDF
    Background: Early detection of heart failure is essential to effectively reduce related mortality. The quantification of the mechanical properties of the myocardium, a primordial indicator of the viability of the cardiac tissue, is a key element in patient's care. Despite an incremental utilization of multi-parametric magnetic resonance imaging (MRI) for cardiac tissue characteristics and function, the link between multi-parametric MRI and the mechanical properties of the heart has not been established. We sought to determine the parametric relationship between the myocardial mechanical properties and the MR parameters. The specific aim was to develop a reproducible evaluative quantitative tool of the mechanical properties of cardiac tissue using multi-parametric MRI associated to principal component analysis. Methods: Samples from porcine hearts were submitted to a multi-parametric MRI acquisition followed by a uniaxial tensile test. Multi linear regressions were performed between dependent (Young's modulus E) and independent (relaxation times T1, T2 and T2*, magnetization transfer ratio MTR, apparent diffusion coefficient ADC and fractional anisotropy FA) variables. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Results: Values of 46.1 +/- 12.7 MPa for E, 729 +/- 21 ms for T1, 61 +/- 6 ms for T2, 26 +/- 7 for T2*, 35 +/- 5% for MTRx100, 33.8 +/- 4.7 for FAx10(-2), and 5.85 +/- 0.21 mm(2)/s for ADCx10(-4) were measured. Multi linear regressions showed that only 45% of E can be explained by the MRI parameters. The principal component analysis reduced our seven variables to two principal components with a cumulative variability of 63%, which increased to 80% when considering the third principal component. Conclusions: The proposed multi-parametric MRI protocol associated to principal component analysis is a promising tool for the evaluation of mechanical properties within the left ventricle in the in vitro porcine model. Our in vitro experiments will now allow us focused in vivo testing on healthy and infracted hearts in order to determine useful quantitative MR-based biomarkers

    The role of aortic compliance in determination of coarctation severity: Lumped parameter modeling, in vitro study and clinical evaluation

    Get PDF
    Early detection and accurate estimation of the extent of coarctation of the aorta (COA) is critical to long-term outcome. Peak-to-peak trans-coarctation pressure gradient (PKdP) higher than 20 mmHg is an indication for interventional/surgical repair. Patients with COA have reduced proximal and distal aortic compliances. A comprehensive study investigating the effects of variations of proximal COA and systemic compliances on PKdP, and consequently on the COA severity evaluation has never been done. This study evaluates the effect of aortic compliance on diagnostic accuracy of PKdP. Lumped parameter modeling and in vitro experiments were performed for COA severities of 50%, 75% and 90% by area. Modeling and in vitro results were validated against retrospective clinical data of PKdP, measured in 54 patients with COA. Modeling and in vitro. PKdP increases with reduced proximal COA compliance (+36%, +38% and +53% for COA severities of 50%, 75% and 90%, respectively; p<0.05), but decreases with reduced systemic compliance (−62%, −41% and −36% for COA severities of 50%, 75% and 90%, respectively; p<0.01). Clinical study. PKdP has a modest correlation with COA severity (R=0.29). The main determinants of PKdP are COA severity, stroke volume index and systemic compliance. Systemic compliance was found to be as influential as COA severity in PKdP determination (R=0.30 vs. R =0.34). In conclusion, PKdP is highly influenced by both stroke volume index and arterial compliance. Low values of PKdP cannot be used to exclude the severe COA presence since COA severity may be masked by reduced systemic compliance and/or low flow conditions

    Kawasaki Disease Shock Syndrome vs Classical Kawasaki Disease: A Meta-analysis and Comparison With SARS-CoV-2 Multisystem Inflammatory Syndrome.

    Get PDF
    BACKGROUND: The emergence of increasing reports worldwide of a severe inflammatory process and shock in pediatric patients resembling Kawasaki disease (KD) and more specifically Kawasaki disease shock syndrome (KDSS), prompted us to explore KDSS in a preamble of a systematic comparison between the two conditions. METHODS: We completed a systematic review of KDSS and performed a meta-analysis comparison between reported KDSS cases and KD controls. RESULTS: A total of ten case-control series were included in the meta-analysis. KDSS patients were older (38.4 ± 30.6 vs. 21.9±19.5 months; P<0.001) compared to standard KD with equal sex distribution and completeness of clinical diagnostic criteria. KDSS present higher CRP (59.4±29.2 mg/dL vs. 20.8±14.8 mg/dL; p<0.001), lower albumin (2.7±0.5 g/dL vs. 3.3±0.5 g/dL; p<0.01), and lower platelets (255±149 109/L vs. 394±132 109/L; p<0.001) but only borderline higher WBC's (p=0.06). Differences in ALT, AST and ESR were non-significant. The odds of IVIG resistance (44.4% vs. 9.6%; (p<0.001) and the hospital length of stay (10.9±5.8 vs. 5.0±3.0 days; p<0.001) were higher in KDSS as were the odds of coronary artery abnormalities (33.9% vs. 8.6%; p<0.001). CONCLUSION: This first meta-analysis on KDSS versus KD represents a basis for future works on KDSS and opens the opportunity for future multicenter studies in the search of causal relationships between presenting elements and the eventual complications of KDSS. The similarities between SARS-CoV-2 multisystem inflammatory syndrome in children (MIS-C) and KDSS open new horizons to the understanding of the etiology and pathophysiology related to KDSS

    Medium-Term Complications Associated With Coronary Artery Aneurysms After Kawasaki Disease: A Study From the International Kawasaki Disease Registry.

    Get PDF
    Background Coronary artery aneurysms (CAAs) may occur after Kawasaki disease (KD) and lead to important morbidity and mortality. As CAA in patients with KD are rare and heterogeneous lesions, prognostication and risk stratification are difficult. We sought to derive the cumulative risk and associated factors for cardiovascular complications in patients with CAAs after KD. Methods and Results A 34-institution international registry of 1651 patients with KD who had CAAs (maximum CA

    Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities.

    Get PDF
    BACKGROUND: Kawasaki disease (KD) is an acute pediatric vasculitis in which host genetics influence both susceptibility to KD and the formation of coronary artery aneurysms. Variants discovered by genome-wide association studies and linkage studies only partially explain the influence of genetics on KD susceptibility. METHODS AND RESULTS: To search for additional functional genetic variation, we performed pathway and gene stability analysis on a genome-wide association study data set. Pathway analysis using European genome-wide association study data identified 100 significantly associated pathways (P<5×10-4). Gene stability selection identified 116 single nucleotide polymorphisms in 26 genes that were responsible for driving the pathway associations, and gene ontology analysis demonstrated enrichment for calcium transport (P=1.05×10-4). Three single nucleotide polymorphisms in solute carrier family 8, member 1 (SLC8A1), a sodium/calcium exchanger encoding NCX1, were validated in an independent Japanese genome-wide association study data set (meta-analysis P=0.0001). Patients homozygous for the A (risk) allele of rs13017968 had higher rates of coronary artery abnormalities (P=0.029). NCX1, the protein encoded by SLC8A1, was expressed in spindle-shaped and inflammatory cells in the aneurysm wall. Increased intracellular calcium mobilization was observed in B cell lines from healthy controls carrying the risk allele. CONCLUSIONS: Pathway-based association analysis followed by gene stability selection proved to be a valuable tool for identifying risk alleles in a rare disease with complex genetics. The role of SLC8A1 polymorphisms in altering calcium flux in cells that mediate coronary artery damage in KD suggests that this pathway may be a therapeutic target and supports the study of calcineurin inhibitors in acute KD

    Extensive Ethnic Variation and Linkage Disequilibrium at the FCGR2/3 Locus: Different Genetic Associations Revealed in Kawasaki Disease.

    Get PDF
    The human Fc-gamma receptors (FcγRs) link adaptive and innate immunity by binding immunoglobulin G (IgG). All human low-affinity FcγRs are encoded by the FCGR2/3 locus containing functional single nucleotide polymorphisms (SNPs) and gene copy number variants. This locus is notoriously difficult to genotype and high-throughput methods commonly used focus on only a few SNPs. We performed multiplex ligation-dependent probe amplification for all relevant genetic variations at the FCGR2/3 locus in >4,000 individuals to define linkage disequilibrium (LD) and allele frequencies in different populations. Strong LD and extensive ethnic variation in allele frequencies was found across the locus. LD was strongest for the FCGR2C-ORF haplotype (rs759550223+rs76277413), which leads to expression of FcγRIIc. In Europeans, the FCGR2C-ORF haplotype showed strong LD with, among others, rs201218628 (FCGR2A-Q27W, r 2 = 0.63). LD between these two variants was weaker (r 2 = 0.17) in Africans, whereas the FCGR2C-ORF haplotype was nearly absent in Asians (minor allele frequency <0.005%). The FCGR2C-ORF haplotype and rs1801274 (FCGR2A-H131R) were in weak LD (r 2 = 0.08) in Europeans. We evaluated the importance of ethnic variation and LD in Kawasaki Disease (KD), an acute vasculitis in children with increased incidence in Asians. An association of rs1801274 with KD was previously shown in ethnically diverse genome-wide association studies. Now, we show in 1,028 European KD patients that the FCGR2C-ORF haplotype, although nearly absent in Asians, was more strongly associated with susceptibility to KD than rs1801274 in Europeans. Our data illustrate the importance of interpreting findings of association studies concerning the FCGR2/3 locus with knowledge of LD and ethnic variation
    • …
    corecore